

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

[Unreleased]

	use of inflection library will be the default after 2021

[0.5.3] - 2020-08-21

Functionality change _before_filter

	When returning a dict from _before_filter, it would previously overwrite the dict returned from the actions themselves.
New functionality is that dict keys returned by an action will overwrite dict keys returned by the _before_filter.

	Default JSONEncoder is set to DjangoJSONEncoder.

	Removed dependency on simplejson.

[0.5.2] - 2020-04-29

Bugfix

	Using @json_action() or @yaml_action() would crash if the action returns an HttpResponse and not serializable data.

[0.5.0] - 2020-04-10

Added

	@auto() decorator, will render your action response based on the HTTP Accept header

	@json_action(json_encoder=None) decorator, will render all action returns as JSON

	@yaml_action(default_flow_style=None) decorator, will render all action returns as YaML

	Site.autodiscover() now accepts new_inflection_library parameter, if True, controller names will be translated into URLs using the inflection library

	Decorators can now be imported directly from django_url_framework.decorators

	use_inflection_library for ActionController, if set to None, allows the Site to control it, oterwise the controller can override the Site setting.

	yaml_default_flow_style - If you want collections to be always serialized in the block style, set to False

	json_default_encoder - Set your custom JSONEncoder class

	Return a 2 item tuple from any action with the second item being the desired status code. Warning: Potentially breaking change

pip

You can also use pip:

pip install django-url-framework

setup.py

To install on a *nix system, cd into the project folder and type:

python setup.py install

or

pip install .

manually

You can also manually copy the django_url_framework folder to a directory that is in your python path.

 The django-url-framework will help you get your django applications done faster.

[image: _images/badge.svg]build
[image: _images/9de98d28ac958e398995979dbcdf2f844ead2a4d.svg]Documentation Status [https://django-url-framework.readthedocs.io/en/latest/?badge=latest]
[image: _images/django-url-framework.svg]Join the chat at https://gitter.im/zeraien/django-url-framework [https://gitter.im/zeraien/django-url-framework?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

It automatically detects urls in a django application, similar to the way Ruby on Rails does it with the Controller-Action-View implementation.

Controllers are created in each django application with a predefined file naming scheme (foo_controller.py) and extending ActionController. The ActionController contains methods often used in a web context, and does common request-related processing.

Each application can have multiple controllers thus allowing for smaller classes in a larger application.

Each function not starting with an underscore becomes it’s own action. By simply returning a dictionary from the action, it will be rendered with the template named using the controller/action.html naming scheme.

Each action and controller can override certain global settings such as using a custom template name or giving the action (or controller) a custom name.

Install

From pypi:

pip install django-url-framework

Alternatively just check out the source here and run python setup.py install or pip install .

Add to your project

settings.py

INSTALLED_APPS = (
 ...,
 'django_url_framework',
 ...
)

urls.py

import django_url_framework
from django.conf import settings
from django.conf.urls import patterns, include

django_url_framework.site.autodiscover(new_inflection_library=True)

urlpatterns = patterns('',
 (r'^', include(django_url_framework.site.urls)),
)

Example

Folder structure

project/
 app/
 cart_controller.py
 id_controller.py
 templates/
 cart/
 add.html
 index.html
 remove.html
 id_manager/
 bar.html

cart_controller.py

from django_url_framework.controller import ActionController

class CartController(ActionController):
 def edit(self, request, id = None):
 return {}
 def remove(self, request, id):
 return {}
 def index(self, request):
 return {}

id_controller.py

from django_url_framework.controller import ActionController

class IDManagerController(ActionController):
 def index(self, request, object_id = None):
 return {}
 def bar(self, request):
 return {}
 def bar__delete(self, request):
 return {}

Result

The following URLs will be created:

/cart/ <- will go to *index action*
/cart/(\w+)/
/cart/edit/
/cart/edit/(\w+)/
/cart/remove/(\w+)/
/foo/
/foo/(\w+)/
/foo/bar/
/foo/bar/delete/

You can easily access your URLs using django’s built-in {% url ... %} tag. Simply call {% url cart_index %} or {% url cart_delete id %} and it will work as you would expect.

There is also a helper tag for faster linking within the same controller.
{% go_action remove %} will take you to /cart/remove/. To use it, {% load url_framework %} in your templates.

The names of the controller files do not affect your URLs, however, the files must have _controller.py suffix. The URL name of the controller is derived from the class name, minus the Controller part. You can also manually specify controller names using the controller_name attribute on the controller class.

Controller names

The controller name is derived from it’s class name, by converting camelcase into underscores.
For instance FooController is simple foo, while FooBarController becomes foo_bar.

The latest version uses the inflection library, however to avoid breaking old code, this is still optional until 2021.

The biggest difference is that with inflection, HTTPResponse becomes http_response, while the old name would be httpresponse. I suggest enabling the inflection library for all new and existing projects. You can manually specify names for controllers whose name change would break your code, or disable the inflection library for those controllers using a flag.

You can give the controller a custom name with the controller_name parameter:

class Controller(ActionController):
 controller_name = "foo"

Enable or disable the use of the new inflection library using a flag

class Controller(ActionController):
 use_inflection_library = True

Other useful controller settings

class BarController(ActionController):

 # default filename extension for all templates
 template_extension = "pug"

 # will require every template file to start with this string
 template_prefix = "foo_"

 # will not look for templates in subdirectories, but in the root templates/ folder
 no_subdirectories = False

 # do not prefix templates with `_` (underscore) when they are called using an AJAX request
 no_ajax_prefix = False

 # Set a prefix for the controller's name, applies even if
 # you set controller_name (template name is based on controller_name, sans prefix)
 # NOTE: The urlconf name will not include the prefix, only the actual URL itself
 # Thus: FooController.list will have the URL /prefixed_foo/list/, but the url name will be
 # `foo_list`.
 controller_prefix = "prefixed_"

 # completely override the name of the controller
 controller_name = "shopping_cart"

 # When used with custom urlconf in actions, these arguments will not be passed to the action
 # example: "/<id:int>/<skip:bool>/" Only `id` will be passed to the `action`, while `skip` will not be.
 consume_urlconf_keyword_arguments = ['skip']

 # set a prefix for all the URLs in this controller
 # So, what normally would be `/controller/action/`, becomes `^prefix/controller/action/`
 urlconf_prefix:list = ["^prefix"]

 # A custom json encoder, subclassing JSONEncoder
 json_default_encoder:JSONEncoder = None

 # use the yaml default flow style
 yaml_default_flow_style:bool = True

 # use the new inflection library to generate controller url
 # if this is None, will use the global setting, otherwise override this on a per controller basis
 use_inflection_library:Union[bool,None] = None

Template filenames

By default templates are stored in the subdirectory with the controller’s name, and the templates are given the same filename as the action name.
If a request is determinned to be AJAX in nature, the template filename is prefixed with an underscore.
Example:

class FooController(ActionController):
 def foo_action(self, request):
 return {}

File structure:

/foo/foo_action.html
/foo/_foo_action.html <--- for AJAX requests.

You can disable this prefixing on a per action or per controller level.

For all actions in a controller:

class FooController(ActionController):
 no_ajax_prefix = True

For a single action:

from django_url_framework.decorators.action_options
class FooController(ActionController):
 @no_ajax_prefix
 def foo_action(self, request):
 return {}

Action names

class FooController(ActionController):
 def action(self, request):
 return {}

Creates the following URL:

/controller/action/

Double underscores __ in action names are converted to slashes in the urlconf, so: action__name becomes /action/name/.

class Controller(ActionController):
 def action__foo(self, request):
 return {}

Creates the following URL:

/controller/action/foo/

Decorate to name

You can also decorate functions to give them different names and prefixes and urls. See decorator package for more details, here is an example:

@action_options.name("foo")
@action_options.prefix("prefix_")
def bar(self, request):
 return {}

will result in:

/controller/prefix_foo/

The action will now have the template /controller/foo.html. Prefixes do not affect template naming.

Action parameters

Providing a third parameter to an action will create a URLconf for that parameter, like so:

def action(self, request, object_id):
 return {}

Will allow you to call that action with:

/controller/action/(\w+)/ <--- parameter consisting of A-Za-z0-9_

If you make the argument optional, an additional URLconf entry is created allowing you to call the action without the third argument.

def action(self, request, object_id = None):
 return {}

Results in:

/controller/action/
/controller/action/(\w+)/ <--- optional argument consisting of A-Za-z0-9_

Decorate for JSON, YAML or Automatic

You can decorate any action to have a default renderer.
Instead of using self._as_json as before, you can just put a decorator like so:

from django_url_framework.decorators import json_action
 @json_action(json_encoder=None)
 def action(self, request, year, month):
 ...
 return {}

Other decorators include @yaml_action(default_flow_style:bool) and @auto().
YaML is self-explanatory, however @auto is a bit interesting, it will automatically determine the renderer based on the HTTP_ACCEPT header.

Warning - if you expose raw data in your actions, that normally would be massaged inside a Server-Side template, DO NOT USE the @auto decorator as this allows an attacker to download raw data from your server.
However, if your responses are designed for an API, the @auto decorator will enable the API client to request data as it sees fit, for example, it can request a Server-Side rendered HTML, or the same data as JSON or YaML.

Here is a list of supported renderers:

	text/html - TemplateRenderer - renders using the appropriate Django template

	text/plain - TextRenderer - prints text data as is, or prints object types using pprint.pformat

	application/json - JSONRenderer - renders data as JSON

	application/yaml - YamlRenderer - renders data as YaML

@auto() accepts the following parameters:

	json_encoder

	yaml_default_flow_style
The work the same as if passed to @json_action() or @yaml_action()

Set HTTP Status Codes easily

Any action can return a tuple of two items, the second item should be an int and will become the HTTP status code for your response.

 @json_action()
 def update(self, request, year, month):
 ...
 return False, 304 #not modified

 @json_action()
 def create(self, request, year, month):
 ...
 return True, 201 #created

Decorate for custom parameters

You can also create your own custom parameters by using the @url_parameters decorator to the function.

from django_url_framework.decorators.action_options import url_paramters
class Controller(ActionController):
 @url_parameters(r'(?P<year>\d{4})/(?P<month>\d\d)')
 def action(self, request, year, month):
 ...
 return {}

The above will create the following url patterns:

/controller/action/(?P<year>\d{4})/(?P<month>\d\d)

Note the lack of trailing slash - you must provide this yourself.

Custom url for any action

You can write your own urlconf for each action, by decorating it with @urlconf.

from django_url_framework.decorators.action_options import urlconf
class Controller(ActionController):
 @action_options.urlconf([
 r'^bar/(?P<year>\d{4})/$',
 r'^bar/(?P<year>\d{4})/(?P<month>\d\d)/$',
 r'^foo/(?P<year>\d{4})/(?P<month>\d\d)/(?P<day>\d\d)/$'
],
 do_not_autogenerate=True)
 def action(self, request, year, month=None, day=None):
 ...
 return {}

The above will create the following url patterns:

/controller/bar/(?P<year>\d{4})/
/controller/bar/(?P<year>\d{4})/(?P<month>\d\d)/$
/controller/foo/(?P<year>\d{4})/(?P<month>\d\d)/(?P<day>\d\d)/$

The do_not_autogenerate argument is true by default and will prevent any urls for this action
from being autogenerated. If do_not_autogenerate were to be set to false in the example below,
the following url would also be created:

/controller/action/

This URL would not actually work since the year argument is required the action function.

Flash messages

The ActionController also has a _flash instance variable that allows you to send messages to the user that can survive a redirect. Simply use

self._flash.append("Message")

self._flash.error("Error message")

The flash messages can be either messages or error messages. The flash object is automatically exported into the context and you can use it as such:

{% if flash.has_messages %}
 {% for message in flash.get_and_clear %}

 {% if message.is_error %}{% endif %}

 <p class="{{message.type}}">{{message}}</p>

 {% endfor %}
{% endif }

Before and After each action

You can override _before_filter and/or _after_filter to perform certain actions and checks before or after an action. Read more in ActionController docs.

These methods accept the “request” parameter which is an HTTP request object for this request.

class AccountController(ActionController):

 def _before_filter(self, request):
 campaign_id = request.GET.get("campaign_id")
 try:
 self._campaign = Campaign.objects.get(pk=campaign_id)
 except Campaign.DoesNotExist:
 self._campaign = None

You can disable the before and after filters by decorating any action with the @disable_filters decorator.

Example:

from django_url_framework.decorators.action_options import disable_filters
@disable_filters
def action(self, request):
 return {}

One of the great features of django url framework is that you can require login for all actions in a controller by simply decorating the before_filter with a decorator to require logging in, see next section!

Authentication

To require login on an action use the @login_required decorator provided by django-url-framework. The decorator also works on _before_filter.

from django_url_framework.decorators import login_required
class AccountController(ActionController):

 @login_required
 def action(self, request):
 return {}

If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the query string. Example: /accounts/login/?next=/polls/3/.
login_required() also takes an optional login_url parameter. Example:

from django_url_framework.decorators import login_required
class AccountController(ActionController):

 @login_required(login_url="/login/")
 def action(self, request):
 return {}

By default, the path that the user should be redirected to upon successful authentication is stored in a query string parameter called “next”. If you would prefer to use a different name for this parameter, login_required() takes an optional redirect_field_name parameter.

Additionally you can use @superuser_required, @permission_required(permission_instance) and @must_be_member_of_group(group_name="some_group").

Another example makes it easy to limiting access to a subset of data based on the logged in user for the whole controller.

from django_url_framework.decorators import login_required
class ItemController(ActionController):
 @login_required()
 def _before_filter(self):
 self.my_items = Item.objects.filter(user=request.user)
 self.my_products = Product.objects.filter(item__in=self.my_items)
 return {
 "page_title": "Item Page"
 }
 def item(self, request, pk):
 item = get_object_or_404(self.my_items, pk=pk)
 return {"item":item}
 def product(self, request, pk):
 item = get_object_or_404(self.my_products, pk=pk)
 return {"product":product}

Only POST? (or GET or anything…)

You can limit what http methods a function can be called with.

The example below limits the update action to only POST and DELETE http methods.

from django_url_framework.decorators import http_methods
class Controller(ActionController):
 @http_methods.POST
 @http_methods.DELETE
 def update(self, request):
 return {}

By default all actions can be called with all http methods.

Custom template extensions

When using jade or something similar you can specify a custom extension for all templates in the controller.

class FooController(ActionController):
 #custom extension for all templates in this controller
 template_extension = "jade"

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

